A Stronger LP Bound for Formula Size Lower Bounds via Clique Constraints

نویسنده

  • Kenya Ueno
چکیده

We introduce a new technique proving formula size lower bounds based on the linear programming bound originally introduced by Karchmer, Kushilevitz and Nisan [11] and the theory of stable set polytope. We apply it to majority functions and prove their formula size lower bounds improved from the classical result of Khrapchenko [13]. Moreover, we introduce a notion of unbalanced recursive ternary majority functions motivated by a decomposition theory of monotone self-dual functions and give integrally matching upper and lower bounds of their formula size. We also show monotone formula size lower bounds of balanced recursive ternary majority functions improved from the quantum adversary bound of Laplante, Lee and Szegedy [15].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds

Karchmer, Kushilevitz and Nisan formulated the formula size problem as an integer programming problem called the rectangle bound and introduced a technique called the LP bound, which gives a formula size lower bound by showing a feasible solution of the dual problem of its LP-relaxation. As extensions of the LP bound, we introduce novel general techniques proving formula size lower bounds, name...

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

Some lower bounds in parameterized ${\rm AC}^0$

We demonstrate some lower bounds for parameterized problems via parameterized classes corresponding to the classical AC. Among others, we derive such a lower bound for all fptapproximations of the parameterized clique problem and for a parameterized halting problem, which recently turned out to link problems of computational complexity, descriptive complexity, and proof theory. To show the firs...

متن کامل

Some Lower Bounds in Parameterized AC^0

We demonstrate some lower bounds for parameterized problems via parameterized classes corresponding to the classical AC0. Among others, we derive such a lower bound for all fptapproximations of the parameterized clique problem and for a parameterized halting problem, which recently turned out to link problems of computational complexity, descriptive complexity, and proof theory. To show the fir...

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 434  شماره 

صفحات  -

تاریخ انتشار 2009